นิยามได้ดังนี้:
สำหรับจำนวนจริงใดๆ a, ค่าสัมบูรณ์ของ a เขียนแทนด้วย |a|
เท่ากับ a ถ้า a ≥ 0
และเท่ากับ
−a ถ้า a < 0 |a|
จะไม่เป็นจำนวนลบ
ค่าสัมบูรณ์จะเป็นจำนวนบวกหรือศูนย์เสมอ นั่นคือจะไม่มีค่า a ที่ |a| < 0
อ่านเพิ่มเติม
วันพฤหัสบดีที่ 12 กุมภาพันธ์ พ.ศ. 2558
คือ
ฟังก์ชั่นที่อยู่ในรูป f(x) = ax+b เมื่อ a และ b เป็นจำนวนจริงเช่น f(x)
= 2x+1
f(x) = -3x f(x) = x-5 เป็นต้น กราฟของฟังก์ชั่นเหล่านี้เป็นเส้นตรงที่ไม่ขนานกับแกน ฟังก์ชั่นเชิงเส้น f(x) = ax+b เมื่อ a=0 จะได้ฟังก์ชั่นอยู่ในรูป f(x) = b ฟังก์ชั่นนี้มีชื่อเรียกเฉพาะว่า ‘‘ ฟังก์ชั่นคงตัว ’’ (Constant function) กราฟของฟังก์ชั่นคงตัวจะเป็นเส้นตรงที่ขนานกับแกน x เช่น f(x) = 4 , f(x) = -2 เป็นต้น อ่านเพิ่มเติม
f(x) = -3x f(x) = x-5 เป็นต้น กราฟของฟังก์ชั่นเหล่านี้เป็นเส้นตรงที่ไม่ขนานกับแกน ฟังก์ชั่นเชิงเส้น f(x) = ax+b เมื่อ a=0 จะได้ฟังก์ชั่นอยู่ในรูป f(x) = b ฟังก์ชั่นนี้มีชื่อเรียกเฉพาะว่า ‘‘ ฟังก์ชั่นคงตัว ’’ (Constant function) กราฟของฟังก์ชั่นคงตัวจะเป็นเส้นตรงที่ขนานกับแกน x เช่น f(x) = 4 , f(x) = -2 เป็นต้น อ่านเพิ่มเติม
กราฟของฟังก์ชันกำลังสอง มีชื่อเรียกว่า พาราโบลา ซึ่งลักษณะของกราฟของฟังก์ชันขึ้นอยู่กับค่าของ
a , b และ c และเมื่อ a เป็นบวกหรือลบ จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ และกราฟของฟังก์ชันกำลังสองที่กำหนดด้วยสมการ
y = ax^2 เมื่อ a ไม่เท่ากับ 0
เมื่อ a > 0 และชนิดคว่ำ เมื่อ
a < 0 อ่านเพิ่มเติม
ฟังก์ชันเป็นบทเรียนที่ต่อจากเรื่องความสัมพันธ์
ในบทเรียนนี้จะได้รู้จักว่าฟังก์ชันเป็นอย่างไร มีเงื่อนไขอย่างไร การแทนฟังก์ชัน
ฟังก์ชันจาก Aไป B ฟังก์ชันที่ควรรู้จัก
พร้อมทั้งนำไปประยุกต์ใช้ในการแก้สมการและอสมการ การแก้โจทย์ปัญหาฟังก์ชัน
ฟังก์ชันคอมโพสิท ฟังก์ชันอินเวอร์ส และพีชคณิตของฟังก์ชัน อ่านเพิ่มเติม
ถ้าพิจารณาเฉพาะเซตของสมาชิกตัวหน้า
และเซตของสมาชิกตัวหลังในคู่อันดับของความสัมพันธ์ใด ๆ
จะได้โดเมน (domain)
และเรนจ์
(range) ของความสัมพันธ์นั้นตามลำดับ
เช่น r1 =
{(1,2),(2,3),(3,4),(4,5)}
r2={(x,y) I x I | y = x}
เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
ส่วนใน r2 จะเห็นว่าโดเมนของ r2 เท่ากับเรนจ์ของ r2 คือเซตของจำนวนเต็ม อ่านเพิ่มเติม
r2={(x,y) I x I | y = x}
เซตของสมาชิกตัวหน้าในคู่อันดับของ r1 = {1,2,3,4} เรียกเซตนี้ว่า โดเมนของ r1
เซตของสมาชิกตัวหลังในคู่อันดับของ r1 = {2,3,4,5} เรียกเซตนี้ว่า เรนจ์ของ r1
ส่วนใน r2 จะเห็นว่าโดเมนของ r2 เท่ากับเรนจ์ของ r2 คือเซตของจำนวนเต็ม อ่านเพิ่มเติม
คู่อันดับ (Order
Pair) เป็นการจับคู่สิ่งของโดยถือลำดับเป็นสำคัญ เช่น คู่อันดับ a, b จะเขียนแทนด้วย
(a, b) เรียก a ว่าเป็นสมาชิกตัวหน้า และเรียก b ว่าเป็นสมาชิกตัวหลัง(การเท่ากับของคู่อันดับ)
(a, b) = (c, d) ก็ต่อเมื่อ a = c และ b = d
ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต B คือ เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B อ่านเพิ่มเติม
ผลคูณคาร์ทีเชียน (Cartesian Product) ผลคูณคาร์ทีเซียนของเซต A และเซต B คือ เซตของคู่อันดับ (a, b) ทั้งหมด โดยที่ a เป็นสมาชิกของเซต A และ b เป็นสมาชิกของเซต B อ่านเพิ่มเติม
สมัครสมาชิก:
บทความ (Atom)